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Abstract. This paper examines a suggestion by Bell that a deterministic model might be 
furnished by the continuum limit of an objective stochastic model which he has proposed 
for quantum field theory on a lattice. The virtues of models of Bell’s type for general 
quantum systems are discussed, and it is shown that for a system of a fixed number of 
particles such a model does yield the deterministic de Broglie-Bohm model in an appropri- 
ate limit. It is argued, however, that a deterministic limit is unlikely to emerge from a 
quantum field theory capable of describing particle production and decay. An interpretation 
of quantum field theory is proposed which has the advantages of Bell’s interpretation but 
is closer to conventional quantum mechanics. 

1. Introduction 

Bell (1984) has proposed an interpretation of quantum field theory which makes it 
possible to formulate the theory without using the concept of measurement. The result 
is a unified theory in which the physical world is not divided into a ‘system’ and an 
‘observing apparatus’ and its evolution is not divided into ‘natural evolution’, governed 
by the Schrodinger equation, and ‘experiments’, governed by the projection postulate. 
In this respect Bell’s theory resembles the de Broglie-Bohm interpretation (Bohm 1952, 
Bell 1982) of non-relativistic quantum mechanics with a finite number of degrees. It 
differs from the de Broglie-Bohm theory in that it is not deterministic but probabilistic. 
However, Bell considers a field theory in which the spacetime continuum has been 
replaced by a lattice; the full theory is supposed to emerge in the limit of zero lattice 
spacing, and Bell expresses the hope that in this continuum limit his interpretation 
may become deterministic. 

This paper is an attempt to examine the possibility of determinism emerging in the 
continuum limit. We first generalise Bell’s proposal so as to be able to apply it to any 
quantum system (0 2). Then, in 9 3, we apply it to a system of a single particle and 
discuss the relation between a lattice model and the continuum limit. Two ways of 
defining the limit are considered; in both cases the probabilistic Bell model does seem 
to approach the deterministic de Broglie-Bohm model. In 9 4 the significance of this 
result for models of quantum field theory is discussed; it is argued that the type of 
limit being considered is unlikely to be relevant to theories which describe processes 
in which the number of particles changes. 

+ A preprint version of this paper was circulated under the title ‘Is there a deterministic model of quantum 
field theory?’. 
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Many physicists, unlike Bell, find the determinism of the de  Broglie-Bohm model 
an undesirable feature. Three-quarters of a century’s experience with quantum reality 
has taught the undeniable lesson that events at this level are unpredictable. The same 
applies to the classical attributes of particles: there is now little desire to describe the 
world in terms of particles having a definite position, as in the de  Broglie-Bohm model. 
On the other hand, it is probably a minority of physicists who would profess themselves 
content with the present state of quantum mechanics, with its dualistic and ill-defined 
projection postulate. Bell’s interpretation, as generalised in § 2, seems to offer the 
possibility of a quantum mechanics which is realistic, being probabilistic and having 
only wavefunctions rather than particle positions, and yet precise and  objective, with 
no projection postulate. Such an  interpretation is outlined in § 5 .  

2. Bell’s interpretation 

Bell proposed to describe the state of the universe at time t by a complex comprising 
a quantum mechanical state vector I@([)) and a set of integers n , , ( t ) ,  one for each 
basic fermion field t,b, and each point x of space (regarded as a lattice). The integer 
nU. is to be thought of as the value of &(x)t,bI(x), i.e. the number of particles of type 
i at the point x (here 4 is the conjugate ++yo of the Dirac spinor 4 ) .  There is, as 
usual, a Hamiltonian operator H, and the state vector I@(  t ) )  evolves deterministically 
according to the Schrodinger equation 

d 
d t  

ih-l@(t))= H l @ ( t ) ) .  

The integers n,(t), on the other hand, change stochastically; if n, has the value N at 
time t ,  the probability that it will have the value M at time t + d t  is 

TNM d t  = % d t  
D N  

where 

2 Re(@(t)lII,(M)(ih)-’HII~=( N ) l @ (  t ) )  if this is 2 0  
(0 otherwise P N M  = 

D N  = (@(t)IL(”(t)) 

and II,=( N )  is the projection operator onto the eigenspace of J,(x)$,(x) with eigenvalue 
N. (For  further details see Bell (1984).) 

In general, an  interpretation like Bell’s can be applied to any quantum system by 
supposing that there is a special set S of commuting observables which always take 
definite values. Let us call these observables the visible properties of the system. The 
state of the system at any time is then specified by a state vector I @ ( ? ) )  and a set of 
eigenvalues for the visible properties. Equivalently, the state of the system can be 
specified by the state vector i @ ( t ) )  and one of its projections onto the simultaneous 
eigenspaces of the visible properties. Let us call this projection the visible sta te  of the 
system and I @ ( t ) )  the pilot state.  We will take the pilot state to be normalised, so that 
the visible state is not normalised. 

Let m and n denote sets of eigenvalues for the visible properties, and let II, be 
the projection operator onto the simultaneous eigenspace Ym with eigenvalues m. Then 
Bell’s statement (2) of transition probabilities can be expressed as follows. 
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The probability that the visible state of the system is IC$,,,) at time t and I+,,) at time 
t + dt, if m # n, is Pmn dt  where 

Pmn = 2 R e [ ( i h ) - ' ( 4 n l H l ~ m ) l  (3)  

provided that this is 2 0  and that I&,,,) = rIml@(l)), I&,,) = rI , l@(t+dt));  otherwise 
P,, = 0. 

Note that Pmn is obtained from the time derivative of l(&IH/&,,,)l2. It can be shown 
(Bell 1984, Sudbery 1986b) that the above statement implies that if the pilot state 
vector I@(?))  is expanded as 

I@(t))=C I 4 n ( t ) )  with Icbn(t))c yn 
n 

then the visible state at time t is I+,,( 1 ) )  with probability (&( t )  I & (  t ) ) ,  provided that 
these probabilities hold at t = 0. It follows that the density matrix for the visible state 
is 

p ( t )  = E  Idn(t))(&n(t)I 
n 

nnI@(t))(@(t)Inn. (4) 

The necessity for an interpretation of this kind has been argued elsewhere (Sudbery 
1984, 1986a) in connection with the problem of continuous observation. It was also 
argued that this does not involve any unorthodox addition to the usual theory, since 
such an interpretation is normally, though tacitly, adopted in the course of calculations 
of decay rates. It also occurs more explicitly in the derivation of master equations 
(Joos 1984) where it is assumed that the density matrix is of the form (4). We will 
return to this point in § 4. 

3. The continuum limit 

In order to see how it is possible for a deterministic model to be the continuum limit 
of a stochastic lattice model like that of 0 2, we will study a simple continuous quantum 
system, a single particle moving in a one-dimensional potential, which is known to 
have a deterministic model (the de Broglie-Bohm model). We will consider two ways 
of approximating this system by a model like Bell's; both yield something like the de 
Broglie-Bohm model in an appropriate limit. 

In the one-dimensional de Broglie-Bohm model the state of the particle is specified 
by a wavefunction $(x, t )  and a real number X(  t )  (the position of the particle on the 
line). These change deterministically according to the equations 

a$ h 2  d2 
a t  ( 2m dx2 

ih-= H$ = -- -+ "(XI+) 

( 6 )  
d X  - A X ,  t )  
d t  P(X, t) 

j = h /  m Im[ (L d$/dx]  

where 

P = 1 * 1 2  (7) 
(the bar denotes the complex conjugate). I t  follows that the probability that X lies 
between x and x + d x  at time t is ]4(x,  t )J2dx,  provided that this is true at r = O .  
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The first lattice model of this system consists of replacing the continuous line by 
a discrete series of points xk with spacing E and considering only the values of the 
wavefunction on this one-dimensional lattice. Labelling the points of the lattice by 
the integer k, we have a state vector consisting of a doubly infinite sequence 4 ( k ) .  To 
approximate the usual integral 5 4 1 ( x ) 4 2 ( x )  dx, we take the scalar product to be given 
by 

Defining the second difference operator A2 by 

A2+(k) = E - ' [ $ J ( ~ +  1 ) - 2 4 ( k ) +  + ( k -  l ) ]  

(not the square of a first difference operator), we take the Hamiltonian to be 

A2+ V 
h Z  H=-- 

2m (9) 

where Vis the potential: V$( k )  = v ( x k ) $ (  k ) .  The stochastic law of evolution, modelled 
on ( 2 ) ,  is that if the particle is at xk at time t the probability that it is at the different 
point xI at time t + d t  is 

where 

(n k 4  ) ( m )  = 4 ( m  ) a k m .  

From (8) and (9) we find, if V is real, 

Dk = e l+ (k ) / '=  probability that the particle is at xk. 

Thus if the particle is at xk it only makes first-order transitions to the neighbouring 
points xk+l and X k - 1 ;  the probability of transition to Xk+l in time d t  is 

=- dt  I m ( - m [ & ( k +  1) - 4 ( k ) ] )  if this is 2 0  
&/4(k)12 mE 

and 
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The probability of transition to xk-1 is 

1747 

(13) 

where 

j - ( k ) = ( h / m & )  I m [ m A 4 ( k - - l ) ] .  

As E + 0, both j + ( k )  and j - (k)  tend to j (xk) ,  where j is the usual current given by 
(7). The probabilities (12) and (13) are the appropriate ones for a particle which 
moves forwards (if j > 0) or backwards (if j < 0) in steps of E occurring at random but 
so as to maintain an average velocity of j / p ,  as in the de Broglie-Bohm model. 

Clearly this model is trying to become the de Broglie-Bohm model as E + O .  
Nevertheless, it could be argued that for all values of E ,  no matter how small, it remains 
a stochastic model mimicking a deterministic model rather than actually becoming 
deterministic. 

It might seem more sensible, instead of pursuing the lattice spacing to zero in a 
literal interpretation of the ‘continuum limit’ as a limit, to go straight to a continuum 
model with the same structure as the lattice model, probabilities being replaced by 
probability densities. By taking the state vector I@(? ) )  to be a wavefunction of the 
continuous variable x, and taking the projection operators to project onto &-functions, 
one might expect to be able to write down a probability that the particle is in an 
interval [a, b] at time t + d t  if it is at a definite position x at time t. However, this 
approach runs into difficulty in interpreting the positivity condition in (10); this has 
to be applied to a distribution S”(x - y ) .  To get a meaningful model it is necessary to 
relax the condition that the particle is at a given position at time t and suppose only 
that it is in a given interval, as in the following. 

In this second Bell-type model of the system, the pilot state space is the usual space 
of wavefunctions 4 of a continuous variable x, and the visible state is a wavefunction 
that vanishes outside one of a set of intervals I k  into which the line is divided by 
partition points xk. Thus the model supposes that the particle is always in one of the 
intervals I k  and that it makes transitions between them with probabilities given by (3). 
In order to avoid problems with products of distributions we make the intervals 
overlap by a small amount 26; thus I k  = [xk - 6, xk+l + a ]  and the projection operators 
n k  are given by 

nk+(x)=  8(x-Xk+6)8(Xk+l+ 6 - x ) 4 ( x ) .  (14) 

According to (3) the probability that there is a transition from I k  to I ,  in time dt  is 

p k l  d t =  h-’ Im(4lnlHnkl4)  d t  

This vanishes unless I k  and I, are adjacent; if 1 = k - 1, then 

if this is 20 .  
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These are just the probabilities that would be obtained from the de  Broglie-Bohm 
model, for in that model the probability of transition from to I k - ,  is non-zero Only 
if V k  = j ( x k ) / p ( x k )  is negative, and then it is the probability of there being a particle 
within a distance -uk d t  to the right of X k ,  namely - u k  d t  p ( x k )  = - j ( x k )  dt. Similarly, 
(16) gives the probability per unit time of a particle moving from Ik to across X k + l .  

Thus it is possible to obtain the deterministic de  Broglie-Bohm model as a limit 
of a Bell-type model for a single particle in one dimension. Note, however, that the 
limit had to be defined in a very ad hoc fashion. There is no a priori justification for 
making the intervals Ik overlap; we could just as well approach the limit of abutting 
intervals by leaving gaps of length 26 between the intervals and letting 6 + 0. But then 
the transition probabilities would be zero for any finite 6, and so they would also be 
zero in the limit. 

Clearly these arguments can be extended to a system with any number of degrees 
of freedom, and in particular to a set of n particles moving in space. 

4. The continuum limit in quantum field theory 

The non-relativistic single-particle system considered in the previous section can be 
regarded as a sector of a field theory system described by a single non-relativistic 
fermion field $ ( X I  (in the Schrodinger picture) with Hamiltonian 

In this theory particle number is conserved, so the n-particle subspaces with different 
values of n are decoupled; the usual first-quantised theory is the one-particle sector. 

In the lattice model the continuous set of field operators $(x) becomes a discrete 
set $k = ( L ( X k ) .  On the one-particle subspace the particle number operators $i$k  are 
just the projection operators n k  of equation (10). Their eigenvalues, of course, are 0 
and 1. These are the visible properties of the system. As the lattice spacing tends to 
0 the Bell stochastic process in the one-particle sector approaches the de  Broglie-Bohm 
deterministic process, at least to the extent that this is true of the first-quantised theory 
of § 3. The same is true of the n-particle sector for each n. Thus the field-theoretic 
model as a whole can be held to have a deterministic limit. The fact that its visible 
properties have discrete spectra does not make it intrinsically less deterministic than 
a theory with continuous visible properties. 

Nevertheless, these indications of a deterministic limit for the system with Hamil- 
tonian (17), for which the number of particles is constant, do  not give good grounds 
for a belief that such a limit exists for other forms of quantum field theory. When the 
particle number is fixed, the deterministic continuum theory is one which is readily 
visualised, and i t  is intuitively plausible that a lattice structure for space should require 
the continuum theory to be modified so that deterministic continuous motion is replaced 
by stochastic jumping. O n  the other hand, if the Hamiltonian induces processes in 
which particle number is not conserved (including the particle-antiparticle pair produc- 
tion processes of relativistic quantum field theory), then i t  is hard to imagine the form 
of a deterministic theory which describes such processes, and it is hard to see :he 
relevance of whether space is a lattice or a continuum to whether particle production 
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and decay are stochastic or  deterministic. These are not conclusive arguments, but 
there are no arguments at all in the other direction, and. to me it seems most plausible 
that, unless there is some radical departure from the formalism of quantum field theory, 
particle production and  decay will have to be described as stochastic processes. 

5. Must we believe in particles with definite positions? 

The advantages of an  objective interpretation like Bell’s over the various forms of the 
Copenhagen interpretation are the following. 

( i )  There is no need to specify what is meant by a ‘measurement’. The conventional 
interpretations d o  not even exist until it is specified what physical processes are to 
count as measurements; yet any particular definition is bound to be highly implausible, 
and  in fact I have never seen a detailed proposal for a precise definition of ‘measure- 
ment’ (but see Bussey 1984, Maxwell 1982). Thus Bell’s interpretation has the advantage 
that it exists. 

(ii) Conventional interpretations give a thoroughly implausible account of quantum 
jumps. The only allowance they make for transitions from one state to another is that 
they occur as a result of experimental intervention with the system in the form of a 
measurement. Nevertheless, pace Schrodinger (1952), quantum jumps occur spon- 
taneously and will be seen to d o  so by an observer who watches the system continuously 
without intervening (Joos 1984, Sudbery 1984, 1986a). Objective interpretations recog- 
nise this situation and (if the idea of a deterministic limit is abandoned) describe it 
in accordance with what seems to be the fact of experience that quantum transitions 
are unpredictable. 

By now it seems to be also a fact of experience (though maybe it is only a prejudice 
instilled by our education) that a quantum particle does not have a definite position 
but can only be described by a wavefunction. This makes the d e  Broglie-Bohm theory 
hard to accept; although it has exactly the same observable consequences as conven- 
tional quantum mechanics, it seems implausible because it introduces extra objective 
properties without offering any way of exhibiting their separate existence. Is it not 
possible to keep the advantages of an objective interpretation without having to believe 
in particle positions? 

One way of doing this would be to keep as objective properties the total numbers 
of particles of each kind, without specifying their positions any more definitely than 
by giving a wavefunction. This can be done in the framework of the generalised Bell 
interpretation of 0 2 ,  taking the visible properties to be the various particle numbers, 
i.e. the integrated fermion densities? $,(x)+!(x) d3x (this only emphasises the lack of 
Lorentz covariance which is already a feature of Bell’s interpretation, and which might 
be remediable by making objective properties relative to the frame of reference in a 
suitable way). Then quantum events consist of the creation and annihilation of 
fermions, in line with the meaning of ‘event’ in particle physics; only these events are 
not localised, but are described by a wavefunction. Alernatively, one could construct 

It might seem that by taking the visible properties to be the total particle numbers ( i n  the whole universe), 
we lose the ability to represent the fact that there are more fermions in some (macroscopically defined) 
places than others. However, the visible Sfate of the universe includes the wavefunctions of the fermions, 
and information about the macroscopic localisation of the fermions is contained in their wavefunctions. 
This interpretation, which contains more objective properties of the world than conventional quantum 
mechanics, cannot be less capable of representing facts about the world. 
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a theory in which the basic events were the emission and absorption of photons or 
other bosons by taking the total photon number as visible property. 

In  such a theory a quantum jump, for example the decay of an excited state of an 
atom, is an objective event occurring at a definite time. I t  should be realised, however, 
that this time is not necessarily what is determined experimentally as the time of decay. 
If an excited state I $ )  of an atom evolves in time t, according to the Schrodinger 
equation, to 

c ( t ) l $ )+  l$’(t)) (18) 

where I@‘( t ) )  is a state of the atom plus a photon, then I@’( r ) )  can be written as 

I$’([)) = Jo‘ c(t ’) l$o)Iy(t- 0) dr‘ (19) 

where I$o) is the ground state of the atom and I ~ ( T ) )  is the state of the photon in which 
it has travelled a distance CT from the atom (see Sudbery (1986b) 9 3.5). It will be 
necessary to do an experiment on the photon (which means, in this interpretation, to 
elicit a further quantum transition) to decide between the various possibilities presented 
in the superposition (19). Thus the system may make a quantum jump at time r to a 
state in which it appears to have made a quantum jump at an earlier time t‘. This is 
true whether or not particle positions are taken to be visible properties, as they are in 
the Bell and de Broglie-Bohm models. 
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